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Introduction: Results and discussion:

« Advanced Oxidation Processes (AOPs) are effective In treating drinking water and wastewater by - Mass transfer was studied for the ozonation of DI water at different pHs using different types of acids to mimic real

generating Reactive Oxygen Species (ROS) like hydroxyl radicals (¢OH, O, *O,), which oxidize and wastewaters. The experiments were run using oxygen flowrate of 500 mL/min and ozone concentration of 48 g/m3 NTP.
: : : : : : The results showed that inorganic acids were more stable and did not alter the ozone mass transfer coefficient, however
mineralize micropollutants. They are particularly useful for degrading hard-to-remove micropollutants

organic acids (e.g. acetic acid) increased the observed mass transfer coefficient due to their reaction with ozone (Fig. 1). In

which are found at low concentrations. .
general ozone was found to be more stable at low pH (Fig. 2).

* Amongst AOPs, those based on ozone showed high efficiency In treating water. « EPP was evaluated for naphthol blue black (10 mg/L), as a model pollutant, with electrolyte 0.05 M Na,SO,, at voltage 10
« Electro-peroxone process (EPP), which combines ozone and hydrogen peroxide produced in an V and current around 660 mA was done using carbon cathode and titanium anode. The ozone gas concentration was 25
electrochemical cell has particularly been found very effective, but several factors influence its g/m3 NTP at flow rate 500 mL/min. The results showed a rapid degradation of naphthol blue black using the EPP process
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‘pH levels: The process Is most efficient at neutral to alkaline pH, with pH 7.5 showing nearly
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The aim of this investigation is to evaluate the efficiency of ozone-based AOPs including EPP iIn
degrading emerging contaminants in water and to assess the potential for water reuse through circular
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these AOPs will be evaluated based on their kinetics, by-products formation, reactive species, gas/liquid 0 ' ' ' ' : '
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mass transfer. The water will be characterized using a range of techniques, including COD, TOC, BOD, 190 290 390 490 590 690 790 890 time (min)

spectroscopy, HPLC/UVIMSMS, and GC/MS, Figure 3: Spectra of electrolysis of naphthol blue black 10 mg/L Figure 4: EPP for naphthol blue black degradation (voltage = 8V)

Conclusions:

« AOPs show excellent performance for treating emerging contaminants

Ozone generator - D;

* Further research is on going to optimise the technology

O,, Os « This research will contribute to the development of sustainable and efficient technologies for the
e-
e- . . .
treatment and reuse of water and help to address challenges associated with water scarcity and
l Ozone-resistant ECs
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